
SMART CONTRACT AUDIT

railgun

September 14th, 2022 | v. 1.0

score

99

PASS
Zokyo’s Security Team has concluded

that this smart contract passes

security qualifications to be listed on

digital asset exchanges.

Security Audit Score

1

RAILGUN Smart Contract Audit

This document outlines the overall security of the RAILGUN smart contracts,evaluated by
Zokyo's Blockchain Security team.

Technical Summary

The scope of this audit was to analyze and document the RAILGUN smart contract
codebase for quality, security, and correctness.

There was 0 critical issue found during the audit. (See Complete Analysis)

Contract Status

low Risk

The testable code is 100%, which is above the industry standard of 95%. (See Complete
Analysis)

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that’s able to withstand the Ethereum network’s fast-paced and
rapidly changing environment, we at Zokyo recommend that the RAILGUN contributors put
inplace a bug bounty program to encourage further and active analysis of the smart
contract.

Testable Code

100%75%50%25%0%

your average

INDUSTRY STANDARD

2

RAILGUN Smart Contract Audit

3Auditing Strategy and Techniques Applied

4Executive Summary

5Structure and Organization of Document

6Complete Analysis

11Code Coverage and Test Results for all files written by the RAILGUN contributors

12Code Coverage and Test Results for all files written by Zokyo Secured team

Table of Contents

Zokyo’s Security Team has followed best practices and industry-standard techniques to
verify the implementation of RAILGUN smart contract. To do so, the code is reviewed line-
by-line by our smart contract developers, documenting any issues as they are discovered.
Part of this work includes writing a unit test suite using the Truffle testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

01 Due diligence in assessing the overall
code quality of the codebase.

03 Testing contract logic against common
and uncommon attack vectors.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

04 Thorough manual review of the
codebase, line by line.

Throughout the review process, Zokyo Security ensures that the contract:

Implements and adheres to existing Token standards appropriately and effectively;

Documentation and code comments match logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices inefficient use of gas, without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the latest vulnerabilities;

Whether the code meets best practices in code readability, etc.

Contract under the scope:

Voting.sol

The Smart contract’s source code was taken from the RAILGUN repository:

Repository: https://github.com/Railgun-Privacy/contract

Last commit: d73c1da62c624fe083417342ce3e64748572bde9

Auditing Strategy and Techniques Applied

3

RAILGUN Smart Contract Audit

https://github.com/Railgun-Privacy/contract

Zokyo auditing team has run a deep investigation of RAILGUN’s smart contract. The contract
is in good condition, well written and structured.

During the auditing process, there were some issues with low severity and informational
issues found. After the technical review of fixes from RAILGUN contributors, we can state
issues are resolved and acknowledged in the doc accordingly.

Based on the conducted audit, we give a score of 99 to the aforementioned contract.

Executive Summary

4

RAILGUN Smart Contract Audit

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,

allocated incorrectly, or otherwise
result in a significant loss.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or
addressed. Acknowledged means that the issue was sent to the client team and the client
team are aware of it, but they have chosen to not solved it. Furthermore, the severity of each
issue is written as assessed by the risk of exploitation or other unexpected or otherwise
unsafe behavior:

Structure and Organization of Document

5

RAILGUN Smart Contract Audit

Complete Analysis

6

RAILGUN Smart Contract Audit

low resolved

The solidity pragma version is not locked for both Voting.sol and Delegator.sol which is
imported in the Voting.sol contract, in the hardhat config file right now the version selected
is 0.8.12, but by having a pragma version that is not locked this can be prone to errors, an
example of such an error is that in the moment the contracts get compiled with a version
lower then 0.8.7, there will be a compilation error because of conversion from bytes to
bytes4 at line 102 in Delegator.sol

Recommendation:
Lock the pragma version to 0.8.12

low Acknowledged

In contract Voting.sol, there are two for loops functions, one at line 207 and one at line 408,
it is recommended that inside the loop functions to implement a break condition that will
check the gasLeft() and will break the function iteration if the gas is lesser then 20 000 units
to not run into the out of gas error, in the case of an “out of gas error”, the gas it is not
returned but in a case of reverting from an require or revert function or from execution
breaking the gas it is returned.

Recommendation:
Implement a check inside the loops that will check for the gas left and will intrerupt the
execution of the function using the break keyword to not be able to run in the “out of gas
error”

7

RAILGUN Smart Contract Audit

informational Acknowledged

In contract Voting.sol, at line 102, variable STAKING_CONTRACT is of type Staking, and the
variable it is used inside the contract to do external calls to a certain address at lines 204,
250, 320, 352. To better optimize the gas usage, it is recommended that
STAKING_CONTACT to be of type address, and do an in-place initialization using an
interface where you want to do an external call, this will greatly reduce the gas costs,
because you will only read from the storage the address instead of an object of type Staking
which is greatly more expensive.

Recommendation:
Change the type of STAKING_CONTRACT to address and do an in-place initialization using
the interface where you are doing external calls at lines 204, 250, 320 and 352.

informational Acknowledged

In contract Voting.sol, at line 103, variable DELEGATOR_CONTRACT is of type Delegator, and
the variable it is used inside the contract to do external calls to a certain address at line 407
inside a for loop. To better optimize the gas usage, it is recommended that
DELEGATOR_CONTRACT to be of type address, and do an in-place initialization using an
interface where you want to do an external call, this will greatly reduce the gas costs,
because you will only read from the storage the address instead of an object of type Staking
which is greatly more expensive.

Recommendation:
Change the type of DELEGATOR_CONTRACT to address and do an in-place initialization
using the interface at line 407

8

RAILGUN Smart Contract Audit

informational resolved

In contract Voting.sol, at line 60, the struct ProposalStruct it is defined, to be in accordance
with best practices and to optimize the gas usage it would be recommended to implement
variable packing inside structures definitions.

Recommendation:
Refactor the structure so it will be in accordance with the variable packing patter.

informational Acknowledged

In contract Voting.sol, at line 207, there is a for loop that could be better optimized by
changing the i++ inside the for loop to an unchecked arithmetic because the i variable is of
type uint256, and you will run out of gas before being able to iterate enough for an overflow

Recommendation:
Change the structure of the i++ instruction to an unchecked one to better optimize the gas.

9

RAILGUN Smart Contract Audit

informational Acknowledged

In contract Voting.sol, at line 408, there is a for loop that could be better optimized by
changing the i++ inside the for loop to an unchecked arithemthic because the i variable is of
type uint256 and you will run out of gas before being able to iterate enough for an overflow.

Recommendation:
Change the structure of the i++ instruction to an unchecked one to better optimize the gas.

(Note: this img also represents multiple changes from recommendations about this lines of
code that are place in the document above for better gas optimization)

informational resolved

In contract Voting.sol, at line 405, there is a for loop that could be better optimized by
changing the the variable actions from storage to an in memory variable, because the gets
used in the for loop and at every use the value will be read again from the storage, which
can become expensive after a lot of operations.

Recommendation:
Change the variable actions form in storage to an in memory variable. (The modification can
be observed in the image from above)

10

RAILGUN Smart Contract Audit

Access Management Hierarchy

Arithmetic Over/Under Flows

Voting.sol

Delegatecall

Hidden Malicious Code

Unchecked CALL
Return Values

External Contract Referencing

General Denial Of Service (DOS)

Floating Points and Precision

Signatures Replay

Pool Asset Security (backdoors in
the underlying ERC-20)

PassRe-entrancy

Unexpected Ether

Default Public Visibility

Entropy Illusion (Lack of Randomness)

Short Address/Parameter Attack

Race Conditions/Front Running

Uninitialized Storage Pointers

Tx.Origin Authentication

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Tests are written by the RAILGUN contributors

Code Coverage

Code Coverage and Test Results for all files

11

RAILGUN Smart Contract Audit

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Governance/Voting
✓ Should go through vote lifecycle correctly (1090ms)
✓ Should not be able to sponsor after the sponsor window (85ms)
✓ Should not not execute failed proposal (265ms)
✓ Should execute proposals correctly (240ms)
✓ Should only be able to sponsor once per week (189ms)
✓ Should only allow voting key to call (134ms)

6 passing (7s)

voting.sol

governance/

92.31 83.87 69.23 93.15 ... 155,167,415

92.31 83.87 69.23 93.15

FILE % STMTS % BRANCH % FUNCS % LINES % UNCOVERED

 LINES

All files 92.31 93.1583.87 69.23

As part of our work assisting RAILGUN DAO Project contributors in verifying the correctness
of their contract code, our team was responsible for writing integration tests using the
Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the RAILGUN
contract requirements for details about issuance amounts and how the system handles these.

Tests are written by Zokyo Secured team

Code Coverage and Test Results for all files

12

RAILGUN Smart Contract Audit

 Voting
✓ Should be deployed correctly (134ms)
✓ Should be able to create a proposal (482ms)
✓ Should be able to get number of proposals (180ms)
✓ Should be able to get actions in a proposal (182ms)
✓ Should allow voting key to be set (518ms)
✓ Should allow sponsorship of proposals (744ms)
✓ Should be able to get sponsored amount given by account (179ms)
✓ Should allow proposals to be unsponsored (498ms)
✓ Should allow votes to be called (429ms)
✓ Should allow nay votes on proposal (639ms)
✓ Should allow yes votes on proposals (359ms)
✓ Should be able to get number of votes cast by voter (388ms)
✓ Should allow proposals to be executed (828ms)
✓ Should not allow proposals to be executed with wrong variables (882ms)

14 passing (13s)

Code Coverage

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Voting.sol

governance/

100 100 100 100

100 100 100 100

FILE % STMTS % BRANCH % FUNCS % LINES % UNCOVERED

 LINES

All files 100 100100 100

We are grateful to have been given the opportunity to work with the
RAILGUN DAO Project contributors.

The statements made in this document should not be interpreted as
an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo's Security Team recommends that the RAILGUN DAO Project
contributors put in place a bug bountyprogram to encourage further
analysis of the smart contract by third parties.

