
SMART CONTRACT AUDIT

railgun_

April 21th, 2022 | v. 1.0



score


100

PASS
Zokyo’s Security Team has concluded 

that this smart contract passes 

security qualifications to be listed on 

digital asset exchanges.

Security Audit Score



1

RAIL Token Smart Contract Audit

This document outlines the overall security of the RAIL Token smart contracts, evaluated by 
Zokyo's Blockchain Security team.

Technical Summary

The scope of this audit was to analyze and document the RAIL Token smart contract 
codebase for quality, security, and correctness.

The testable code is significant for the ensurance of contracts security.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of 
the contract, rather it is limited to an assessment of the logic and implementation. In order 
to ensure that a smart contract is able to withstand the Ethereum network’s fast-paced and 
rapidly changing environment, we at Zokyo recommend that the RAIL Token team put in 
place a bug bounty program to encourage further and active analysis of the smart contract.

Testable Code

100%75%50%25%0%

your average

INDUSTRY STANDARD

Contract Status

low Risk



2

RAIL Token Smart Contract Audit

3Auditing Strategy and Techniques Applied

5Executive Summary

6Structure and Organization of Document

7Complete Analysis

Table of Contents



The Smart contract’s source code was taken from Etherscan.

Repository: https://etherscan.io/
address/0xe76c6c83af64e4c60245d8c7de953df673a7a33d#c ode#F1#L1

Auditing Strategy and Techniques Applied

3

RAIL Token Smart Contract Audit

Within the scope of this audit Zokyo auditors have reviewed the following contract(s):

Rail.sol

Behavior of `transfer` method is equivalent to standard ERC20 behaviour in ALL scenarios 
after ANTI_BOT_LOCKTIME has passed

- ANTI_BOT_LOCKTIME has passed and there is no way for the `transfer` method to revert 
back to a non-standard ERC20 transfer behavior

- governanceMint method is only callable by the governance contract and can mint up to a 
max supply of cap

- _mint() can mint up to a max supply of cap and can be called by method governanceMint 
and during deploy of smart contract

Additional requirements to check:

Throughout the review process, care was taken to ensure that the contract:

Implements and adheres to existing standards appropriately and effectively;

Documentation and code comments match logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices in efficient use of resources, without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the latest vulnerabilities;

Whether the code meets best practices in code readability, etc.

https://etherscan.io/address/0xe76c6c83af64e4c60245d8c7de953df673a7a33d#c ode#F1#L1
https://etherscan.io/address/0xe76c6c83af64e4c60245d8c7de953df673a7a33d#c ode#F1#L1


4

RAIL Token Smart Contract Audit

Zokyo’s Security Team has followed best practices and industry-standard techniques to 
verify the implementation of RAIL Token smart contracts. To do so, the code is reviewed 
line-by-line by our smart contract developers, documenting any issues as they are 
discovered. Part of this work includes writing a unit test suite. In summary, our strategies 
consist largely of manual collaboration between multiple team members at each stage of 
the review:

01 Due diligence in assessing the overall 
code quality of the codebase.

03 Testing contract logic against common 
and uncommon attack vectors.

02 Cross-comparison with other, similar 
smart contracts by industry leaders.

04 Thorough, manual review of the 
codebase, line-by-line.



There were 0 critical issues found during the audit.

5

RAIL Token Smart Contract Audit

Executive Summary



The issue has minimal impact on the 
contract’s ability to operate.

Low

The issue has no impact on the 
contract’s ability to operate.

Informational

The issue affects the ability of the 
contract to compile or operate in a 
significant way.

High

The issue affects the ability of the 
contract to operate in a way that 
doesn’t significantly hinder its 
behavior.

Medium

The issue affects the contract in such 
a way that funds may be lost, 
allocated incorrectly, or otherwise 
result in a significant loss.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are 
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or 
addressed. Furthermore, the severity of each issue is written as assessed by the risk of 
exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of Document

6

RAIL Token Smart Contract Audit



Complete Analysis

7

RAIL Token Smart Contract Audit

informational unresolved

Solidity version should be updated.
Best practices for Solidity development and auditors standard checklist requires strict and 
explicit usage of the latest stable version of Solidity.

Recommendation:
Consider updating to “pragma solidity 0.8.11;”.



8

RAIL Token Smart Contract Audit

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

Rail.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL 
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

Pass

Pass

Floating Points and Precision

Pass

Pass

Signatures Replay

PassPool Asset Security (backdoors in 
the underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether 

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

Uninitialized Storage Pointers

PassTx.Origin Authentication



We are grateful to have been given the opportunity to work with RAIL 
Token.



The statements made in this document should not be interpreted as 
investment or legal advice, nor should its authors be held 
accountable for decisions made based on them.



Zokyo's Security Team recommends that RAIL Token put in place a 
bug bounty program to encourage further analysis of the smart 
contract by third parties.


