
SMART CONTRACT AUDIT

railgun_

April 20th, 2022 | v. 1.0



score


98

PASS
Zokyo’s Security Team has concluded


that this smart contract passes


security qualifications to be listed on


digital asset exchanges.

Security Audit Score



1

Railgun Smart Contract Audit

This document outlines the overall security of the RAILGUN smart contracts, evaluated by

Zokyo's Blockchain Security team.

Technical Summary

The scope of this audit was to analyze and document the RAILGUN smart contract 
codebase for quality, security, and correctness.

The testable code is significant for the ensurance of contracts security.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of

the contract, rather limited to an assessment of the logic and implementation. In order to

ensure a security of the contract we at Zokyo recommend that the RAILGUN put in place a 
bug bounty program to encourage further and active analysis of the smart contract.

Testable Code

100%75%50%25%0%

your average

INDUSTRY STANDARD

Contract Status

low Risk



2

Railgun Smart Contract Audit

3Auditing Strategy and Techniques Applied

4Executive Summary

5Structure and Organization of Document

6Complete Analysis

10Code Coverage and Test Results for all files

Table of Contents



The source code of the smart contract was taken from the RAILGUN repository:
https://github.com/railgun-privacy/contract

Audited commit: 62401e1a64b9af968d85b8f5347f1a72cc56862c

Auditing Strategy and Techniques Applied

3

Railgun Smart Contract Audit

Within the scope of this audit Zokyo auditors have reviewed the following contract(s):

Globals.sol Snark.sol

Commitments.sol Verifier.sol

Poseidon.sol RokenBlacklist.sol

RailgunLogic.sol

Throughout the review process, care was taken to ensure that the contract:

Implements and adheres to existing standards appropriately and effectively;

Documentation and code comments match logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices in efficient use of resources, without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the latest vulnerabilities;

Whether the code meets best practices in code readability, etc.

Zokyo’s Security Team has followed best practices and industry-standard techniques to 
verify the implementation of RAILGUN smart contracts. Ro do so, the code is reviewed line-
by-line by our smart contract developers, documenting any issues as they are discovered. 
Part of this work includes writing a unit test suite. In summary, our strategies consist largely 
of manual collaboration between multiple team members at each stage of the review:

01 Due diligence in assessing the overall

code quality of the codebase.

03 Testing contract logic against common

and uncommon attack vectors.

02 Cross comparison with other, similar

smart contracts by industry leaders.

04 Thorough, manual review of the

codebase, line by line.

https://github.com/railgun-privacy/contract


RAILGUN contributors set of contracts represents functionality for the private balances 
keeping empowered with Merkle trees and snarks verifications.



Audited contracts are well-structured, have very high code quality and are completely

documented. There were no critical issues found. The functionality is sufficiently covered 
with unit-tests, which were also verified by auditors team. Auditors have carefully checked

business logic, access control, verification process, tokens usage and other security factors.

Few issues present in the report are connected to the Solidity best practices and do not

influence contract security.

4

Railgun Smart Contract Audit

Executive Summary



The issue has minimal impact on the

contract’s ability to operate.

Low

The issue has no impact on the 
contract’s ability to operate.

Informational

The issue affects the ability of the 
contract to compile or operate in a 
significant way.

High

The issue affects the ability of the 
contract to operate in a way that 
doesn’t significantly

hinder its behavior.

Medium

The issue affects the contract in such 
a way that funds may be lost, 
allocated incorrectly, or otherwise 
result in a significant loss.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are

tagged “Resolved” or “Unresolved” depending on whether they have been fixed or 
addressed. Furthermore, the severity of each issue is written as assessed by the risk of 
exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of Document

5

Railgun Smart Contract Audit



Complete Analysis

6

Railgun Smart Contract Audit

informational unresolved

Variables lacks validation.
RailgunLogic.sol: function changeFee().

Percentage fee variables should be verified not to exceed 100%.

Recommendation:
Verify that new fee variables are less than “BASIS_POINTS”.

informational unresolved

Use enum instead of uint.
Globals.sol: line.

Variables “tokenType” from struct “TokenData”, “withdraw” from struct “BoundParams” are

supposed to be assigned to a restricted range of numbers. To ensure that values of these

variables are not out of bounds, a enum should be used as a set of constants, assigned to

numbers, starting from 0.

Recommendation:
Define enum for each variable instead of using uint8.



7

Railgun Smart Contract Audit

PassAccess Management Hierarchy Pass

PassArithmetic Over/Under Flows Pass

Poseidon.solCommitments.solGlobals.sol

PassPassDelegatecall

PassPassHidden Malicious Code

PassPassUnchecked CALL 
Return Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPassPool Asset Security (backdoors in 
the underlying ERC-20)

PassPass Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Re-entrancy

PassPassUnexpected Ether 

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of Randomness)

PassPassShort Address/Parameter Attack

PassPassRace Conditions/Front Running

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication



8

Railgun Smart Contract Audit

PassAccess Management Hierarchy Pass

PassArithmetic Over/Under Flows Pass

Verifier.solSnark.solRailgunLogic.sol

PassPassDelegatecall

PassPassHidden Malicious Code

PassPassUnchecked CALL 
Return Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPassPool Asset Security (backdoors in 
the underlying ERC-20)

PassPass Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Re-entrancy

PassPassUnexpected Ether 

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of Randomness)

PassPassShort Address/Parameter Attack

PassPassRace Conditions/Front Running

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication



9

Railgun Smart Contract Audit

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

TokenBlacklist.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL 
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

Pass

Pass

Floating Points and Precision

Pass

Pass

Signatures Replay

PassPool Asset Security (backdoors in 
the underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether 

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

Uninitialized Storage Pointers

PassTx.Origin Authentication



Code Coverage and Test Results for all files

As part of our work assisting RAILGUN contributors in verifying the correctness of their 
contract code, our team has checked the complete set of unit tests prepared by the 
RAILGUN contributors.


It needs to be mentioned, that the original code has a significant original coverage with 
testing scenarios provided by the RAILGUN contributors. All of them were also carefully 
checked by the auditors team to be consistent and meaningful.

Tests written by Zokyo Security

10

Railgun Smart Contract Audit

Logic/Commitments

Logic/RailgunLogic

Logic/Snark

Logic/TokenBlacklist

Logic/Verifier

✓ 
✓ 
✓ 
✓ 
✓ 

Should calculate zero values (49ms)

Should calculate empty root

Should hash left/right pairs

Should incrementally insert elements (2957ms)

Should roll over to new tree

✓ 
✓ 
✓ 
✓ 
✓ 
✓ 
✓ 

Should change treasury

Should change fee (49ms)

Should calculate fee (1137ms)

Should calculate token field

Should hash note preimages (232ms)

Should deposit ERC20 (762ms)

Should transfer ERC20 (30167ms)

✓ 
✓ 
✓ 

Should reject invalid proofs (549ms)

Should accept valid proofs (539ms)

Should reject points outside scalar field

✓ 
✓ 

Should add and remove from blacklist (84ms)

Should emit blacklist events (54ms)

✓ 
✓ 
✓ 
✓ 
✓ 

Should set verifying key (68ms)

Should hash bound parameters (92ms)

Should verify dummy proofs (5251ms)

Should verify proofs

Should throw error if circuit artifacts don t exist



11

Railgun Smart Contract Audit

Commitments.sol

Snark.sol

Poseidon.sol

Verifier.sol

logic\

RailgunLogic.sol

Globals.sol

TokenBlacklist.so

FILE

All files

92.31

100

100

95

83.66

71.57

100

100

% STMTS

83.66

87.5

66.67

100

50

46.43

32.14

100

100

% BRANCH

46.43

75

100

0

100

88.46

100

100

100

% FUNCS

88.46

92.31

100

100

95

86.5

76.29

100

100

% LINES

86.5

223,228,231

139

... 386,390,396

Uncovered Lines



We are grateful to have been given the opportunity to work with 
RAILGUN contributors.



The statements made in this document should not be interpreted as 
investment or legal advice, nor should its authors be held 
accountable for decisions made based on them.



Zokyo's Security Team recommends that RAILGUN contributors put in 
place a bug bounty program to encourage further analysis of the 
smart contract by third parties.


