
SMART CONTRACT AUDIT

railgun_

Nov 3th, 2021 | v. 1.0

score

99

PASS
Zokyo’s Security Team has concluded

that this smart contract passes

security qualifications to be listed on

digital asset exchanges

Security Audit Score

1

RAILGUN Contract Audit

This document outlines the overall security of the RAILGUN smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the RAILGUN smart contract
codebase for quality, security, and correctness.

The testable code is 99.26%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and
rapidly changing environment, we at Zokyo recommend that the RAILGUN contributors put
in place a bug bounty program to encourage further and active analysis of the smart
contract.

Testable Code

100%75%50%25%0%

your average

INDUSTRY STANDARD

There were no critical issues found during the audit.

Contract Status

low Risk

2

RAILGUN Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

7Complete​ ​Analysis

9Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

9Tests written by RAILGUN contributors

13Tests written by Zokyo Secured team

Table of Contents

Auditing Strategy and Techniques Applied

3

RAILGUN Contract Audit

The Smart contract's source code was taken from the RAILGUN repository.

Repository: https://github.com/Railgun-Privacy/contract/commit/
d2c63577ddd8310c87dced0d549cf9505b372111

Contracts under the scope:

Delegator;

Voting;

Poseidon;

ProxyAdmin;

Deployer;

Commitments;

RailgunLogic;

Distributor;

TokenWhitelist;

VestLock;

Staking;

Globals;

Proxy;

Snark;

Multisend;

Verifier;

Treasury.

https://github.com/Railgun-Privacy/contract/commit/ d2c63577ddd8310c87dced0d549cf9505b372111
https://github.com/Railgun-Privacy/contract/commit/ d2c63577ddd8310c87dced0d549cf9505b372111

4

RAILGUN Contract Audit

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;

Documentation and code comments match logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices in efficient use of gas, without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the latest vulnerabilities;

Whether the code meets best practices in code readability, etc.

Zokyo's Security Team has followed best practices and industry-standard techniques to
verify the implementation of RAILGUN smart contracts. To do so, the code is reviewed line-
by-line by our smart contract developers, documenting any issues as they are discovered.
Part of this work includes writing a unit test suite using the Truffle testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

01 Due diligence in assessing the overall
code quality of the codebase.

03 Testing contract logic against common
and uncommon attack vectors

02 Cross-comparison with other, similar
smart contracts by industry leaders.

04 Thorough, manual review of the
codebase, line-by-line.

The Zokyo team has conducted a security audit of the given codebase. The contracts
provided for an audit are well written and structured. All the findings spotted within the
auditing process are presented in this document.

There were no critical issues found during the auditing process. Just a couple of
informational issues and one issue with a low severity level were found. All the issues are left
unresolved as the contracts are already deployed on the mainnet. However, it is worth
mentioning that all of the mentioned issues have no major security or operational risk.

Based on the audit result we can give a score of 99 to the provided codebase.

5

RAILGUN Contract Audit

Summary

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational​

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the ability of the
contract to compile or operate in a
significant way.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or
addressed. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​Document

6

RAILGUN Contract Audit

Complete​ ​Analysis

7

RAILGUN Contract Audit

Token receiver address defined as payable

low UNresolved

In the treasury contract function you declared the address of the tokens
receiver as payable. Addresses declared payable can receive ether.

transferERC20()

Recommendation:
Remove payable for a token receiver.

Misleading comment at Treasury.sol

informational UNresolved

In the treasury contract function is used for transferring tokens.transferERC20()

Recommendation:
Change comment in the notice from to

.
“Transfers ETH to specified address” “Transfers

ERC20 token to specified address”

Misleading comment at VestLock.sol

informational UNresolved

In the VestLock contract function is used for transferring tokens.transferERC20()

Recommendation:
Change comment in the notice from to

.
“Transfers ETH to specified address” “Transfers

ERC20 token to specified address”

8

RAILGUN Contract Audit

Typo at TokenWhitelist.sol

informational UNresolved

In the TokenWhitelist event, is misspelled.TokeDelisting

Recommendation:
Change event to at line 22 and line 78.TokenDelisting

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Tests are written by the RAILGUN contributors

Code Coverage

9

RAILGUN Contract Audit

All files 93.72 70.10 82.83 94.13

Delegator.sol

Globals.sol

Staking.sol

RailgunLogic.sol

Distributor.sol

proxy\

Treasury.sol

ProxyAdmin.sol

logic\

TokenWhitelist.sol

VestLock.sol

contracts\

Commitments.sol

Deployer.sol

Poseidon.sol

token\

Verifier.sol

treasury

Voting.sol

Snark.sol

Multisend.sol

Proxy.sol

55.56

97.93

91.30

88.94

100.00

94.06

93.85

100.00

100.00

100.00

100.00

99.34

80.00

94.74

100.00

100.00

91.67

100.00

100.00

96.97

83.33

84.00

42.86

82.14

77.97

100.00

83.33

100.00

100.00

57.89

50.00

50.00

64.29

64.29

100.00

100.00

100.00

100.00

100.00

100.00

100.00

62.50

57.14

62.50

100.00

72.73

70.00

83.33

100.00

100.00

100.00

100.00

100.00

80.00

100.00

100.00

77.78

75.00

75.00

85.71

83.33

82.76

0.00

89.66

77.50

100.00

60.00

98.63

100.00

93.94

100.00

100.00

99.33

80.00

95.00

100.00

100.00

92.31

100.00

100.00

82.35

82.76

89.29

92.42

100.00

100.00

93.48

100.00

...117, 120, 123

352

230, 235, 238

...127, 351, 353

...185, 195, 285

29

98

FILE % STMTS % BRANCH % FUNCS % LINES Uncovered Lines

10

RAILGUN Contract Audit

Test Results

Logic/Whitelist

Logic/Commitments

Proxy/Proxy

Proxy/Proxy

Logic/RailgunLogic

✓
✓
✓

Should initialize whitelist with passed values

Should add an address to whitelist

Should remove address from whitelist

✓
✓
✓

✓
✓
✓

✓
✓
✓
✓

Should verify proofs

Should deposit token correctly

Should collect treasury fees correctly
Should deposit with 2 outputs correctly

Should deposit with 3 outputs correctly

Should deposit and withdraw
Should deposit, do an internal transaction, and withdraw

Should transact with large circuit

Should deposit and generate commitments correctly

Should be able to spend from generated commitment

✓ Should update the tree correctly

✓ Should generate commitment correctly

(132ms)

✓ Should initialize the tree correctly (57ms)

✓ Should deploy as paused (126ms)

✓ Should upgrade and unpause (135ms)

✓ Should unpause and pause again (208ms)

✓ Should upgrade and unpause (210ms)

✓ Should upgrade unpause and upgrade again (325ms)

✓ Shouldn't allow unpausing unless the implementation is set

✓ Should unpause and pause again (229ms)

✓ Should upgrade unpause and upgrade again (319ms)

(2060ms)

(20691ms)

(20771ms)

(47217ms)

(24052ms)

(24024ms)

(46906ms)

(69847ms)

(130299ms)

(1051ms)

(24743ms)

(835ms)

(129ms)

(117ms)

11

RAILGUN Contract Audit

(8m)

Treasury/Treasury

Governance/Delegator

Governance/Staking

Governance/Voting

42 passing

Token/Vesting

Token/Multisend

Governance/Deployer

✓ Should transfer ETH (63ms)

✓ Should set permissions (57ms)

✓ Should count intervals properly (38ms)

✓ Should go through vote lifecycle correctly (754ms)

✓ Should set up vesting (475ms)

✓ Should multisend (1599ms)

✓ Should deploy contracts at expected address (104ms)

✓ Should transfer ERC20 (130ms)

✓ Should be able to call a function with permission (80ms)

✓ Should return correct snapshot regardless of hint (14317ms)

✓ Should not be able to sponsor after the sponsor window (54ms)

✓ Should be able to call the function with wildcard function permission (94ms)

✓ Should delegate and snapshot correctly (379ms)

✓ Should execute proposals correctly (193ms)

✓ Should be able to call the function with wildcard contract permission (64ms)

✓ Should go through stake lifecycle correctly (330ms)

✓ Should not execute failed proposal (177ms)

✓ Should intercept calls to self correctly (70ms)

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

As part of our work assisting RAILGUN in verifying the correctness of their contract code,
our team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the RAILGUN contract
requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Tests written by Zokyo Security team

Code Coverage

12

RAILGUN Contract Audit

Delegator.sol

Globals.sol

Staking.sol

RailgunLogic.sol

Distributor.sol

proxy\

ProxyAdmin.sol

logic\

TokenWhitelist.sol

contracts\

Commitments.sol

Deployer.sol

Poseidon.sol

token\

Verifier.sol

Voting.sol

Snark.sol

Multisend.sol

Proxy.sol

100.00

98.97

95.65

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

96.97

96.97

96.00

100.00

92.86

96.61

100.00

100.00

100.00

100.00

84.21

50.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

75.00

77.14

75.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

92.86

91.67

88.89

0.00

93.10

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

94.12

93.10

100.00

100.00

100.00

100.00

100.00

100.00

101, 108

FILE % STMTS % BRANCH % FUNCS % LINES Uncovered Lines

13

RAILGUN Contract Audit

All files 99.26 90.20 94.95 99.63

Treasury.sol

VestLock.sol

treasury

100.00

100.00

100.00

100.00

100.00

100.00

88.89

75.00

75.00

100.00

100.00

100.00

Test Results

Delegator contract

Deployer contract

Staking contract

✓
✓
✓
✓

✓
✓
✓
✓

✓

Should initialize owner correct

Should set permission correct

Should revoke permission correct

Should call the function with permission
Should revert call function if not has permission

Should set permission by call contract function correct

Should transfer ownership by call contract function correct

Should renounce ownership by call contract function correct
Should intercept calls to self correctly

✓ Should initialize owner correct

✓ Should return initial total voting power in system correct

✓ Shouldn't stake zero amount

✓ Shouldn't unlock twice

✓ Should deploy correctly

✓ Should stake correct

✓ Should unlock correct

(70ms)

(135ms)

(78ms)

(127ms)

(89ms)

(50ms)

(59ms)

(92ms)

(186ms)

(286ms)

14

RAILGUN Contract Audit

Voting contract

✓
✓
✓
✓
✓
✓
✓

 ✓
 ✓

 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓

Should claim correct

 Shouldn't claim twice

Should delegate correct

Shouldn't delegate after unlock

Shouldn't delegate to zero address

Should undelegated correct

Should return stakesLength correct

Should fail intervalAtTime when the requested time is below the deploy time value

Should return latestGlobalsSnapshotInterval correct
Should return latestAccountSnapshotInterval correct

Should return accountSnapshotLength correct

Should return globalsSnapshotLength correct

Should return accountSnapshot correct

Should return globalsSnapshot correct

Should return globalsSnapshotAt correct

Should return accountSnapshotAt correct

✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

Should initial proposalsLength be correct

Should getActions correct

Should getSponsored correct

Should createProposal correct

 Should revert createProposal with no actions
Should sponsorProposal correct

Should revert sponsorProposal when the proposal went to vote

Should revert sponsorProposal when sponsor window passed

Should revert sponsorProposal when not enough voting power

Should unsponsorProposal correct

Should revert unsponsorProposal when the proposal went to vote

Should revert unsponsorProposal when sponsor window passed

 Should revert unsponsorProposal when request more than sponsored

 Should callVote correct

 Should revert callVote when the proposal went to vote

 Should revert callVote when sponsor window passed

 Should revert callVote when not met sponsorship threshold

 Should vote for correct

 Should vote against correct

(172ms)

(178ms)

(259ms)

(158ms)

(112ms)

(237ms)

(371ms)

(4022ms)

(4312ms)

(60ms)

(136ms)

(85ms)

(123ms)

(157ms)

(46ms)

(112ms)

(134ms)

(201ms)

(90ms)

(93ms)

(161ms)

(217ms)

(45ms)

(90ms)

(233ms)

(206ms)

snapshot

15

RAILGUN Contract Audit

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

 Should revert vote if the voting window was not opened

 Should revert vote if call vote was not called for the proposal

 Should revert vote against if yay window was closed

 Should revert vote for if nay window was closed

 Should revert vote if there is not enough voting power

 Should executeProposal correct

 Should revert execute proposal if call vote was not called for the proposal

 Should revert executeProposal if a quorum hasn't been reached

 Should revert executeProposal if the proposal hasn't been passed

 Should revert executeProposal if execution window hasn't been started

 Should revert executeProposal if execution window has been closed

 Should revert executeProposal if a proposal has already been executed

 Should revert executeProposal if proposal action is reverted

Should initialize railgun logic correct

Should change treasury correct

Should revert change treasury by not owner

Should change fee correct

Should revert change fee by not owner

Should verify proofs

Should deposit whitelisted token correct

Should deposit and withdraw whitelisted token correct

Should revert deposit when adaptID address is incorrect token correct

Should revert deposit when the merkle root is incorrect

Should revert deposit not whitelisted token

Should collect treasury fees correctly

Should generateDeposit and withdraw token from the generated commitments

Should revert generateDeposit if fee not paid

Should revert generateDeposit if deposited amount is zero

Should revert generateDeposit if deposit not whitelisted token

(161ms)

(69ms)

(151ms)

(217ms)

(125ms)

(21943ms)

(21641ms)

(49991ms)

(22057ms)

(21974ms)

(22395ms)

(49711ms)

(25316ms)

(81ms)

(54ms)

(91ms)

(212ms)

(181ms)

(166ms)

(291ms)

(145ms)

(219ms)

(220ms)

(222ms)

(267ms)

(297ms)

(287ms)

Commitments contract

Commitments contract

✓ should initialize merkle tree correct

✓ should revert adding a new commitment if the leaf is invalid

✓ should create a new tree correct

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓ should update the tree correctly

✓ should add new generated commitment correctly

16

RAILGUN Contract Audit

TokenWhitelist contract

TokenWhitelist contract

TokenWhitelist contract

ProxyAdmin contract

Distributor contract

Multisend contract

✓ should initialize correctly

✓ should revert add whitelisted token if caller, not the owner

✓ should revert remove whitelisted token if caller, not owner

✓ should add whitelisted token correct (159ms)

✓ should verifyProof correct (22972ms)

✓ should verifyProof with 10 nullifiers correct (41842ms)

✓ should revert verifyProof with incorrect nullifier

✓ Should upgrade and emit event correct (186ms)

✓ Should not set new implementation as non-contract address (45ms)

✓ Should pause and emit event correct (221ms)

✓ Should unpause and emit event correct (234ms)

✓ Should revert unpause before implementation is set

✓ Should transfer ownership correct

✓ Should revert transfer ownership by not the owner (237ms)

✓ Should upgrade correct (81ms)

✓ Should pause and emit event correct (157ms)

✓ Should unpause and emit event correct (187ms)

✓ Should transfer ownership correct

✓ Should initialize vesting implementation correct

✓ Should create vest lock correct (79ms)

✓ Should not create vest lock by not the owner (62ms)

✓ Should multisend correct to one address (76ms)

✓ Should multisend correct to multiple addresses (106ms)

✓ should remove whitelisted token correct (179ms)

16

RAILGUN Contract Audit

VestLock contract

Treasury contract

✓ Should initialize owner correct

✓ Should initialize release time correct

✓ Should delegate correct (204ms)

✓ Should stake correct (134ms)

✓ Should unlock correct (115ms)

✓ Should claim correct (248ms)

✓ Should receive ETH correct (45ms)

✓ Should transferETH correct (78ms)

✓ Shouldn't transferETH while not achieved release time

✓ Should transferERC20 correct (45ms)

✓ Shouldn't transferERC20 while not achieved release time

✓ Should initialize owner correct

✓ Should transfer ETH (58ms)

✓ Should revert transfer ETH if caller, not owner

✓ Should transfer ERC20 (173ms)

✓ Should revert transfer ERC20 if caller, not owner (137ms)

(7m)125 passing

We are grateful to have been given the opportunity to work with the
RAILGUN contributors.

The statements made in this document should not be interpreted as
investment or legal advice, nor should its authors be held
accountable for decisions made based on them.

Zokyo's Security Team recommends that the RAILGUN contributors
put in place a bug bounty program to encourage further analysis of the
smart contract by third parties.

