

Customer: Right To Privacy
Date: November 2nd, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Right to Privacy.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Privacy System Platform
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/Railgun-Privacy/contract
Commit d2c63577ddd8310c87dced0d549cf9505b372111
Technical
Documentation

NO

JS tests YES
Website righttoprivacy.foundation
Timeline 25 OCTOBER 2021 – 02 NOVEMBER 2021
Changelog 02 NOVEMBER 2021 – INITIAL AUDIT

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 11

Disclaimers 12

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Right to Privacy (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contract and its code review conducted between October 25th, 2021 -
November 2nd, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/Railgun-Privacy/contract
Commit:

d2c63577ddd8310c87dced0d549cf9505b372111
Technical Documentation: No
JS tests: Yes (included: “/test/”)
Contracts:

governance/Delegator.sol
governance/Deployer.sol
governance/Staking.sol
governance/Voting.sol
logic/Commitments.sol
logic/Globals.sol
logic/Poseidon.sol
logic/RailgunLogic.sol
logic/Snark.sol
logic/TokenWhitelist.sol
logic/Verifier.sol
proxy/Proxy.sol
proxy/ProxyAdmin.sol
teststubs/governance/Getter.sol
teststubs/governance/GovernanceTarget.sol
teststubs/governance/StakingStub.sol
teststubs/logic/CommitmentsStub.sol
teststubs/logic/TokenWhitelistStub.sol
teststubs/proxy/ProxyTarget.sol
teststubs/TokenStubs.sol
token/Distributor.sol
token/Multisend.sol
token/VestLock.sol
treasury/Treasury.sol

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation

▪ Token Supply manipulation
▪ Assets integrity

▪ User Balances manipulation
▪ Data Consistency manipulation

▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secured but
some functions could run out of gas. 	

 You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 2 medium and 2 low severity
issues.

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. One test failed

While 41 tests are passing but 1 is failing. It fails with the “Out of
Gas” message which means your logic could be too complicated and
overloaded with loops, maths, and external calls.

....

Contracts: RailgunLogic.sol

Recommendation: Please check the functionality of the RailgunLogic and
make sure you’re not running out of gas and all tests are passing.

2. Too low test coverage

Global test coverage is about 68% for code branches, while the main
RailgunLogic contract is covered only for 57.89% of logic branches.

The recommended coverage is minimum 95% for branches, while it should
be definitely 100% for the main logic contracts.

www.hacken.io

Contracts: Commitments.sol, RailgunLogic.sol, Snark.sol,
TokenWhitelist.sol, Verifier.sol, Delegator.sol

Recommendation: Please make sure you have at least 95% of overall code
branches covered by tests and to have 100% branches coverage for the
main business logic code.

 Low

www.hacken.io

1. Missing zero address validation

Accidentally setting “_vestLockImplementation” to zero-address could
lead to contract out of work because it doesn’t have the ability to
update it in any way.

Contracts: Distributor.sol

Function: constructor

Recommendation: Please check “_vestLockImplementation” for being zero
address.

2. A public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Contracts: Multisend.sol

Function: multisend

Recommendation: Use the external attribute for functions never called
from the contract.

	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 2 medium and 2 low severity
issues.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

